Tropical Forest Fragmentation Affects Floral Visitors but Not the Structure of Individual-Based Palm-Pollinator Networks
نویسندگان
چکیده
Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.
منابع مشابه
Genetic rescue of remnant tropical trees by an alien pollinator.
Habitat fragmentation is thought to lower the viability of tropical trees by disrupting their mutualisms with native pollinators. However, in this study, Dinizia excelsa (Fabaceae), a canopy-emergent tree, was found to thrive in Amazonian pastures and forest fragments even in the absence of native pollinators. Canopy observations indicated that African honeybees (Apis mellifera scutellata) were...
متن کاملNectar sugar composition and volumes of 47 species of Gentianales from a southern Ecuadorian montane forest.
BACKGROUND AND AIMS This study investigates 47 taxonomically related species (Gentianales), all native to a tropical montane forest in southern Ecuador, in terms of nectar chemistry and nectar volumes in relation to pollination biology. METHODS Nectar volumes of covered (24-h production) and uncovered (standing crop) flowers were measured in the natural habitat. Sucrose, fructose and glucose ...
متن کاملFlorivory indirectly decreases the plant reproductive output through changes in pollinator attraction
Species often interact indirectly with each other via their traits. There is increasing appreciation of trait-mediated indirect effects linking multiple interactions. Flowers interact with both pollinators and floral herbivores, and the flower-pollinator interaction may be modified by indirect effects of floral herbivores (i.e., florivores) on flower traits such as flower size attracting pollin...
متن کاملSpecies interactions in an Andean bird–flowering plant network: phenology is more important than abundance or morphology
Biological constraints and neutral processes have been proposed to explain the properties of plant-pollinator networks. Using interactions between nectarivorous birds (hummingbirds and flowerpiercers) and flowering plants in high elevation forests (i.e., "elfin" forests) of the Andes, we explore the importance of biological constraints and neutral processes (random interactions) to explain the ...
متن کاملPollinator recognition by a keystone tropical plant.
Understanding the mechanisms enabling coevolution in complex mutualistic networks remains a central challenge in evolutionary biology. We show for the first time, to our knowledge, that a tropical plant species has the capacity to discriminate among floral visitors, investing in reproduction differentially across the pollinator community. After we standardized pollen quality in 223 aviary exper...
متن کامل